作为教练,最难解决的事情之一就是教跑步者培训语言。跑步者经常来找我理解诸如间隔,节奏和大步之类的白话单词。
As a younger coach, I would lose my athletes when I started talking about ATL, CTL and TSB. Once runners got the understanding of the acronyms dialed in — they had to learn how to utilize the numbers.
更好的问题需要更好的数据
有了更好的问题,就会有更好的决定。作为一名工程师和教练 - 数据讲述了一个故事,并深入了解图片 - 我一直认为,当我们看起来更深一点时,我们可以超越简单的主观决定因素,例如好奔跑,而不是不好的运行。它为我们提供了客观的决定因素,可以进一步分析。我们可以在四个星期后在给定的路线上通过速度和心率(PA:HR)重复锻炼并跟踪我们的效率,我们可以拍摄摘要和快照,并了解我们在400米拆分以外的每个间隔中的表现。如果我们想要更好的东西,我们需要清晰的图片,能够更深入地研究我们的锻炼。

预测性能-CTL
我的一种越来越多的理论是,运动员的适当和合适的锥度是,当运动员的24小时TSS负载不会推动他们的反应或预测CTL超过他们在训练中获得的最高CTL。这是一个工作理论,迄今为止测试了大约25名运动员。目前,在使用的25例案件中,有20例在预测马拉松时间方面相当一致。
这意味着,如果运动员有适当的积累并击中63个CTL - 他们应该能够努力产生足够的TSS负载,从而产生63.的崛起。一天的结果更好,但是根据我的经验,这相当准确地预测了比赛日的表现。
For those curious, I normally use pace zones of .91 to .95 for marathon training and this is what I set in the workout builder to achieve the “predicted” results. This prediction is also what I use four to seven weeks out to guide our more critical workouts and build confidence.

理解脱钩 - PA:HR
If I had one marker for success with my athletes that demands the most control, defines their capability rep to rep, and determines the success of a workout — I look to decoupling via PA:HR. Within the 0-5% range, we’re in a happy place. To best understand decoupling — imagine two parallel lines of PA:HR. When they are parallel we’ll have a 0% decouple.
To achieve a positive correlation two things must happen: 1) HR must drift upwards while pace maintains or 2) HR maintains and pace declines. An example could be an athlete who runs a 5K test and goes out too hard, then fades in the final 1000-meters while their HR is pegged.
当我分析上述锻炼时。我正在寻找一些东西。主要是,我们达到了主集或间隔的“高原”的速度。这可以告诉我们运动员是否进步太快了 - 运动员走了一条人行横道之后,他们试图达到目标步伐,以4:00达到心率高原,而脱钩为8.87%(ouch)8:00的工作平均为1.47%。这告诉我们,尽管下坡时,心率可能会导致下坡的形成,或者只是起步太快。

更好的健身摘要
绩效管理图表是您健康状况的非常视觉上的表示,但它确实表明您正在建立管理更多训练压力的能力。直到您深入研究要点的趋势之前,很难知道这些线条和点如何真正转化为健身的真实故事。建造TSS的方法有很多。运动员可以以较慢的速度进一步奔跑,并以零速度工作建立基础。这是更好的健身吗?这取决于您的定义。
If fitness is defined as a combination of speed and load, the best measurement could be the fitness history chart. There, you can look at Peak Pace, Pace by Distance, and Heart Rate.
To evaluate if they are building more than just the ability to manage training stress, you can use this chart to understand if adaptations are being built over time. Sixty-minute speed month-to-month is a motivating metric for many marathoners, and 20-minute speed is motivating for many athletes focused on the 10K. If you see a metric go the other way, take a deeper dive into why that may be. Better questions equal better decisions.
你做了许多运行或硬间隔机汇吗er 20 or 60 minutes? Were conditions suitable for fast running in those time frames? These two questions alone can determine why fitness may not have added up when it needed to.
This is a phenomenal tool to use to analyze post-race and post-season to set dynamic goals for the next season. You can start to set compound goals whereby you achieve a certain CTL while targeting a 60-minute average pace or increase weekly run distance in conjunction with fewer weekly hours. Or even create more regular streaks above a certain mileage mark while continuing to build your CTL.
可行的运行培训数据
当您花时间从主观的培训视图转移时,您开始理解了解该软件的教练的价值以及引起最佳结果的工具。运动员和教练的二人组不仅使我们不仅提出更好的问题并做出更好的决定,还使我们能够以一种导致比赛后成功的方式嫁给主观和客观的运行数据!